Description

This is a PCB for a classic Minimoog-style transistor ladder low pass filter in Eurorack format. The main design goal was to make a compact filter (8hp) that is easy and affordable to build. For this reason, front panel controls and main circuitry are integrated on a single PCB, and all components are through hole (but see build choices below).

Internally there are a Minimoog-style core and an opamp output stage. Many thanks to Yves Uson (yusynth.net) for sharing his version of the filter, the core is based on his implementation and was the starting point for me to learn synthesizer DIY. Apart from the obvious frequency and resonance pots, there is a $\mathrm{V} /$ Oct CV input (which can track over a few octaves but has rather limited temperature compenstation), an CV input with attenuverter and a Drive control.

Current usage (typical): +12 V 20 mA , -12 V 10 mA .

Note: This documentation is valid for both Rev 1.0 and Rev 1.1 PCBs. If you have a Rev 1.0 board, a few component values should be changed, see the special section below.

Please read this document through before starting, so you place the correct values and buy the right components!

Features

- Classic 4-pole low pass filter
- V/Oct input
- FM input with attenuverter
- Drive (input level) control
- 9 mm pots, Thonkiconn jacks and all throughhole components on a single PCB
- 8hp Eurorack format

Build instructions

Optional components and build choices

THT or SMD transistors: There are two options for the ladder transistors, depending on your preference:

1. Five hand-matched pairs (so 10 transistors total) in standard TO-92 throughhole package. The specified transistor is BC547C, but most small-signal NPN transistors should work just fine ${ }^{1}$. Each pair should be matched to 2 mV or better in VBE. Matching transistors is easy, just buy plenty (say 50 or 100) and with one evening of work you will have enough matched pairs for a huge synth. For instructions and more info, see my blog article: http://kassu2000.blogspot.fi/ 2015/10/transistor-matching.html.
2. Five dual matched transistor packages BCM847BS, in tiny SOT-363 surface mount package. These are to be soldered at the SMD pads between the regular THT transistor pair locations. The long silkscreen line indicates pin 1.

Just to emphasize, choose either option 1 or 2 and not both!

Optional trimmer RV5: There is a trimmer RV5 that allows to zero the CV attenuverter. This is only really useful if you use a center-detent pot for the attenuverter. RV5 has a second function though: it makes the attenuverter curve more "logarithmic" towards both sides, making it easier to apply small amounts of modulation. If you omit RV5, the attenuverter curve is linear.

Value changes for Rev 1.0 boards

If you have a Rev 1.0 PCB, there are a few values wrong on the silkscreen. Please make the following changes, the updated values agree with the Rev 1.1 PCB and schematic.

Designators	Silkscreen value (wrong)	Correct value
R9	15 k	10 k
R28	10 k	6.8 k
$\mathrm{C} 8, \mathrm{C} 10$	$100 \mu \mathrm{~F}$	$10 \mu \mathrm{~F}$

Component and build notes

- The board is designed for small $0.4 \mathrm{~W}-$ type metal film transistors, with 5.08 mm ($0.2 \check{\mathrm{~T}}$) hole spacing. Standard 0.6 W metal film will fit if you place them vertically.
- While not critical, it is often suggested to hand-match the filter capacitors C1-C4. To do this, measure a bunch of caps with a multimeter (in capacitance mode), and choose four that are most similar. Accuracy of a few percent is fine.
- Pots are standard ALPHA 9mm vertical type, available at e.g. Thonk or Tayda.
- Jacks are Thonkiconn.
- Trimmers are the Bourns 3296X multiturn type, or compatible (I use T910X series from TME). The X is important: it means the screw is sideways. Other versions with vertical screw don't fit under the front panel, however if needed they can be mounted on the backside of the PCB
- The 10 uF caps should be 2.5 mm lead spacing, max diameter 6.3 mm and max height 9 mm . I use Nichicon UST1H100MDD. They should be installed on the front side of the board,

[^0]even though on Rev 1.0 boards the silkscreen is on the back. The square pad is the positive lead.

- The 220 uF capacitor (Diameter max 8.0 mm , Lead spacing 3.5 mm) should be placed on the back of the board as indicated on the silkscreen (because it is too tall to fit under the panel)
- The power header is a 5×2-pin 2.54 mm unboxed header, and should be installed on the backside of the board.

Trimming

- Output offset (RV1) should be adjusted such that the output voltage is 0 with no
input
- V/Oct trim (RV4) should be adjusted with the resonance at maximum by trial and error with a CV keyboard. I recommend trimming it for tracking around the $100-400 \mathrm{~Hz}$ range, and don't expect good tracking at high octaves.
- Frequency offset (RV2) can be used to adjust the frequency range
- If installed, the attenuverter trim (RV5) can be used to zero the CV input when the control is at center position. Apply a CV signal like an LFO and adjust until it has no effect.

Bill of materials

Qty	Designator	Value	Note	
4	C1,C2,C3,C4	47 n	Film, 5mm pitch	
1	C9	100 n	X7R ceramic, 2.5mm pitch	
4	C6,C7,C8,C10	10 u	Min. 25V, 2.5mm pitch, max dia.	6.3mm,
			max height 9mm.	Example:

Board view

Rev 1.0 PCB
(shown with SMD transistors)

Rev 1.1 PCB
(shown with THT transistors)

Front panel dimensions

Dimensions in mm (inch)

Revision history

Board revisions

1.0 Initial design.
1.1 Updated component values of R9, R28, C8, C10; Re-arranged C8, C10 and power header.

Documentation revisions

A Initial documentation for board revision 1.0
B Re-formatted and added info for board revision 1.1; Small fixes to documentation.

C Added note regarding 2N3904 pinout.
D Added front panel dimensions.

Contact

Check for updated documentation and other information on my blog at kassu2000.blogspot.com. I am always happy to answer questions and receive feedback at kassutronics@gmail.com.

[^0]: ${ }^{1}$ For example 2N3904. Beware that the pinout of the 2 N 3904 is the reverse of the BC547, so they should be installed rotated 180 degrees.

